SRec: a social behaviour based recommender for online communities
نویسندگان
چکیده
Recommender systems have been successfully used in electronic commerce applications such as recommending books, movies, restaurants and airlines based on users’ past behaviour. More recently, such systems have made inroads into social media, for examples to recommend partners in online dating sites. In our work, we have developed a social behaviour based recommender system within an online community with the aim to increase the level of interactions in the community, thereby increasing its social capital (the density of interactions among its members in the community) and its chance of sustainability. Our recommender system is built on a social trust model. It is able to recommend people and content. Importantly, it can recommend people in different roles: friends, mentors and leaders. In this paper, we describe our context and the social behaviour based recommender system we developed. Author
منابع مشابه
A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملA Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کاملAn Online News Recommender System for Social Networks
In this paper, an online news recommender system for the popular social network, Facebook, is described. This system provides daily newsletters for communities on Facebook. The system fetches the news articles and filters them based on the community description to prepare the daily news digest. Explicit survey feedback from the users show that most users found the application useful and easy to...
متن کاملStreaming Recommender Systems
The increasing popularity of real-world recommender systems produces data continuously and rapidly, and it becomes more realistic to study recommender systems under streaming scenarios. Data streams present distinct properties such as temporally ordered, continuous and high-velocity, which poses tremendous challenges to traditional recommender systems. In this paper, we investigate the problem ...
متن کاملA Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012